

INSTITUCIÓN EDUCATIVA LA PRESENTACIÓN						
NOMBRE ALUMNA:						
ÁREA / ASIGNATURA: Ciencias naturales /Química						
DOCENTE: Fabio Alejandro Paredes Oviedo						
PERIODO	TIPO GUÍA	GRADO	N٥		FECHA	

Desempeño: Conoce y aplica lo relacionado con Los números cuánticos y la configuración electrónica

Guía sobre Números Cuánticos y Configuración Electrónica: Desentrañando la estructura atómica

Introducción:

En el átomo, ese minúsculo universo que compone toda la materia, los electrones no se mueven de forma caótica. Obedecen reglas y principios que nos permiten comprender su comportamiento y distribución espacial. Es aquí donde entran en juego los **números cuánticos** y la **configuración electrónica**, herramientas fundamentales para desentrañar la estructura atómica.

¿Qué son los números cuánticos?

Los números cuánticos son un conjunto de cuatro valores numéricos que describen las propiedades de los electrones en un átomo:

- 1. Número cuántico principal (n): Indica el nivel de energía en el que se encuentra el electrón.
 - o Valores permitidos: n = 1, 2, 3, ..., siendo n = 1 el nivel de menor energía y aumentando la energía a medida que aumenta n.
 - 2. **Número cuántico secundario (I):** Determina la **subcapa** o **subnivel de energía** dentro del nivel principal.
 - Valores permitidos: I = 0, 1, 2, ..., (n 1).
 - Se asocia a las letras s, p, d, f, ... según el valor de l:

Aprendizaje

- s: subcapa con 1 orbital
- p: subcapa con 3 orbitales
- d: subcapa con 5 orbitales
- •f: subcapa con 7 orbitales
- 3. **Número cuántico magnético (m):** Indica la **orientación espacial** del orbital dentro de la subcapa.
- Valores permitidos: m = -l, -l + 1, ..., 0, ..., l 1, l.
- 4. Número cuántico de espín (s): Describe el giro del electrón sobre su propio eje.
- \circ Valores permitidos: $s = +1/2 \circ -1/2$.

Principios básicos para la configuración electrónica:

La configuración electrónica de un átomo representa la distribución de sus electrones en los orbitales atómicos. Para determinarla, se deben seguir algunos principios fundamentales:

- 1. **Principio de Aufbau**: Los electrones ocupan los orbitales de menor energía primero. El orden de llenado de orbitales es:
 - o 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, ...

Vi en un sueño una mesa donde todos los elementos encajaban según lo requerido. Al despertar, inmediatamente lo escribí en una hoja de papel. **Dmitri Mendeléyev.**

- 2. **Principio de exclusión de Pauli:** No puede haber dos electrones en un átomo con el mismo conjunto de números cuánticos (n, l, m, s). Un orbital solo puede contener como máximo 2 electrones, con espines opuestos (+1/2 y -1/2).
- 3. **Diagrama de barras de Aufbau:** Se utiliza para representar la configuración electrónica de forma gráfica, indicando la cantidad de electrones en cada orbital.

Ejemplos de configuración electrónica:

- Hidrógeno (H): 1s1 (un electrón en el orbital 1s)
- **Helio (He):** 1s² (dos electrones en el orbital 1s)
- Carbono (C): 1s² 2s² 2p² (dos electrones en 1s, dos en 2s y dos en 2p)
- Oxígeno (O): 1s² 2s² 2p⁴ (dos electrones en 1s, dos en 2s y cuatro en 2p)

Ejercicios propuestos:

- 1. Determine la configuración electrónica completa del elemento con número atómico 14 (silicio).
- 2. Escriba la configuración electrónica abreviada (usando el símbolo del gas noble más cercano) del elemento con número atómico 36 (kripton).
- 3. Indique cuántos electrones desvalenciados tiene el átomo de fósforo (P, número atómico 15).
- 4. Represente el diagrama de barras de Aufbau para el átomo de hierro (Fe, número atómico 26).
- 5. Compare las configuraciones electrónicas de los elementos sodio (Na) y cloro (Cl). ¿Cómo se relaciona esto con su reactividad química?