{ }	
SI S	
TO AMESSAU AND A STANDARD OF A	

INSTITUCIÓN EDUCATIVA LA PRESENTACIÓN							
OMBRE A	OMBRE ALUMNA:						
REA / A	REA / ASIGNATURA: MATEMÁTICAS						
OCENTE:	OCENTE: CILENA MARÍA GÓMEZ BASTIDAS						
PERIODO	TIPO GUÍA	GRADO	ИО	FECHA	DURACIÓN		
3	APRENDIZAJE	4	3	2024	3 unidades		

INDICADORES DE DESEMPEÑO

- 1. Identificación de números decimales, solución de operaciones entre ellos.
- Construcción y utilización de representaciones pictóricas para comparar números racionales (como fracción o decimales).
- 3. Reconocimiento de fracciones decimales, para la solución de ejercicios con los números naturales.
- 4. Interpretación y representación de datos descritos como puntos en el plano cartesiano.
- 5. Descripción y clasificación de cuadriláteros utilizando conceptos de lados paralelos, lados perpendiculares, ángulo recto, ángulo agudo, ángulo obtuso, etc.
- 6. Clasificación de polígonos según sus lados y sus ángulos.
- 7. Aplicación de conocimientos aprendidos en la solución de situaciones cotidianas

¿Qué voy a aprender?

Números decimales, fracciones decimales, plano cartesiano, cuadriláteros, líneas paralelas perpendiculares, ángulos su clasificación, polígonos.

¿QUE ESTOY APRENDIENDO?

Con la presente guía lo que voy a aprender son los números decimales, fracciones decimales, el plano cartesiano sus elementos, ubicación de parejas de ordenadas, líneas paralelas y perpendiculares ángulos clasificación y medidas complementarios y suplementarios, los polígonos y su clasificación.

QUE VOY A APRENDER... NUMEROS DECIMALES

Están formados por una parte entera y otra decimal separados por una coma. Se usan cuando queremos representar números más pequeños que la Unidad,

Encierra en un círculo azul la parte entera y en un círculo rojo, la parte decimal.

LECTURA Y ESCRITURA DE LOS NÚMEROS DECIMALES

$$\frac{1}{10} = 0.1$$
 un décimo $\frac{1}{100} = 0.0$ 1 un centésimo $\frac{123}{1000} = 0.123$ ciento veintitrés milésimos

Compara (<, >, =)

Ordenar de menor a mayor

Ejemplo:

FRACCIÓN DECIMAL BÁSICA: Es aquella que tiene por numerador 1 por denominador 10; 100; 1000; etc.

La fracción	se lee	y s	e escribe	
10		un décimo	0,1	
1100		un centésimo		0,01
$\frac{1}{1000}$	1	un milésimo	0,001	

CONVERSIONES

Estudiaremos las siguientes:

Conversiones de un número decimal en fracción.

Para convertir un número decimal en fracción se escribe un quebrado que tenga por **numerador** la parte entera, si la hay, y la parte decimal sin la coma; por **denominador**, la unidad seguida de tantos ceros como cifras decimales tenía el número.

Ejemplo:
$$0,7 = \frac{7}{10}$$
 $0,125 = \frac{125}{1000}$ $6,7 = \frac{67}{10}$

PRACTIQUEMOS

Escribe cada número decimal como fracción decimal:

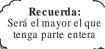
0,5	=	 0,9	=		3,45	=	
0,3	=	 8,0	=		2,7	=	
0,8	=	 0,07	=		3,5	=	
0,00	7 =	 4,544	=	·	3,29	=	
1,07	=	 0,16	=		2,079	=	
2,00	8 =	 0,325	=		3,045	=	

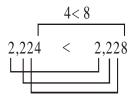
Es una tabla que nos ayuda a ubicar los números en su correcta posición. Está dado por:

Centenas	Decenas	Unidades	Coma decimal	Décimo	Centésimo	Milésimo
С	D	U	,	d	c	m

Practico en la tabla ubicación de números decimales Escribe cómo se lee cada decimal:

0,6	 0,16	
0,1	 0,25	
0,9	 3,28	
0.4	5.04	




Decimales	UM	С	D	U	,	d	с	m	Se lee
40,245									40 enteros, 245 milésimos
2432,007									
4600,9									
47,008									
2071,236									
307,3									
9034,07									

COMPARACIÓN DE NUMEROS DECIMALES:

3,245 > 0,896

Tiene parte No tiene parte entera entera

Suma de números decimales

Para **sumar** números decimales:

- Primero se **escriben** uno **debajo** de **otro** de modo que se correspondan las **unidades** del mismo orden.
- Después se **suman** como si fueran números naturales y se pone la **coma** en el resultado, bajo la **columna** de las comas.

Resta de números decimales

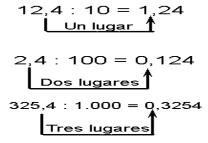
Para **restar** números decimales:

- Primero se escriben el **minuendo** y el **sustraendo** de modo que las **comas** estén en **columna**.
- Después se **restan** como si fueran números naturales y se pone la **coma** en el resultado bajo la **columna** de las comas.

Si faltan órdenes de unidades decimales se ponen ceros.

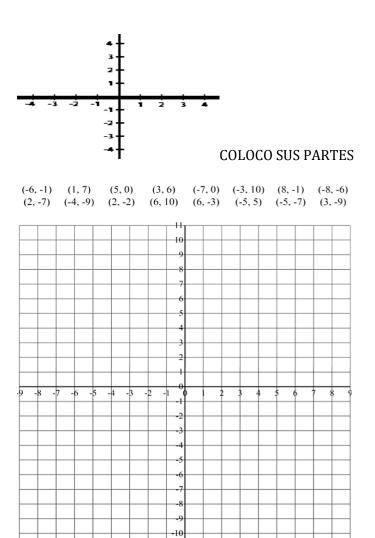
Multiplicación de un número decimal por natural

$$2,146 \times 3 = 6,438$$

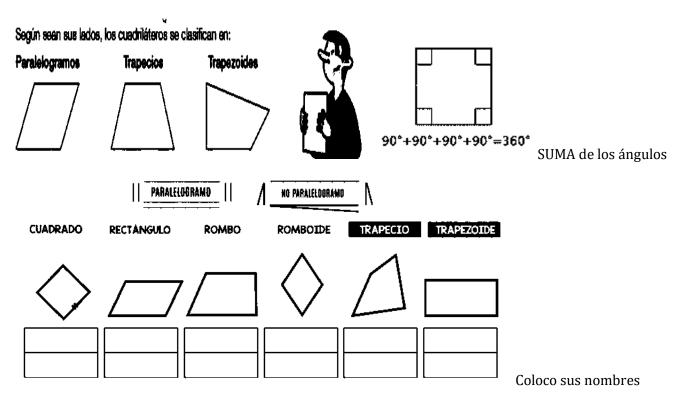

$$2,146 \longrightarrow 3$$

$$\times 3$$

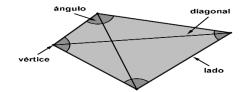
$$6,438 \longrightarrow 3$$


Para **multiplicar** un número decimal por un número natural:

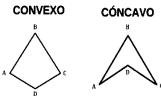
- Primero se realiza la **multiplicación** sin tener en cuenta la **coma**.
- Después se **separan** de la **derecha** del producto tantas **cifras decimales** como tenga el factor **decimal**.



Para **dividir** un número decimal por 10, 100, 1.000, ... se desplaza


la **coma** uno, dos, tres, ... lugares hacia la **izquierda** respectivamente. Si no hay cifras suficientes se escriben **ceros**. PLANO CARTESIANO

REPRESENTAR PUNTOS DE COORDENADAS



Elementos de un cuadrilátero:

Explico cada una de sus partes.

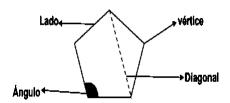
TIPOS DE CUADRILATEROS

Cuadriláteros **cóncavos**. Son cuadriláteros que tienen algún ángulo que mide más de 180°.

Cuadriláteros convexos. Son cuadriláteros que no tienen ningún ángulo interno que mide 180° o más.

¿QUE ES UN POLIGONO? Son figuras planas formadas por una línea poligonal cerrada y su interior.

¿QUÉ ES UN POLÍGONO? Los polígonos son figuras planas cerradas, limitadas por segmentos rectilíneos.


Los elementos de un polígono: Son los lados, los vértices, los ángulos y las diagonales.

Los lados: Son los segmentos rectilíneos que delimitan al polígono.

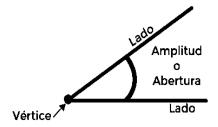
Los vértices: Son los puntos donde se cortan los lados dos a dos.

Los ángulos: Son las regiones comprendidas entre cada par de lados.

Las diagonales: Son los segmentos que unen cada pareja de vértices no consecutivo.

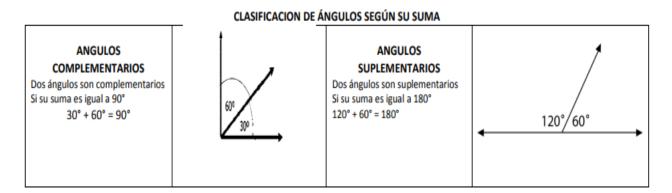
Los **polígonos regulares** son aquellos que tienen todos sus lados y ángulos iguales.

Los **polígonos** irregulares son los que no cumplen esas dos condiciones.

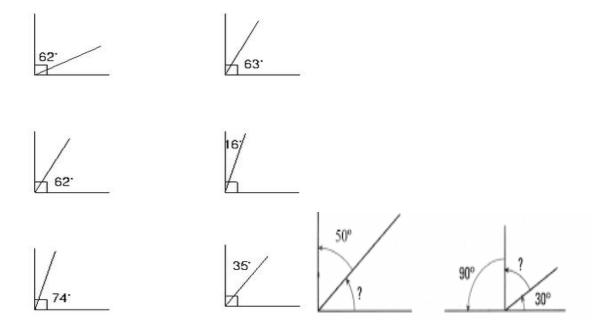

Las principales características **de** todos los **polígonos regulares** son: Todos sus lados miden lo mismo. Todos sus ángulos interiores miden lo mismo.

DIBUJO EN EL CUADERNO POLIGONOS REGULARES E IRREGULARES.

Clasificación de los polígonos: Según el número de sus lados, los polígonos se clasifican:



Un ángulo es la porción del plano comprendida entre dos semirrectas que tienen un origen común. **Partes de un ángulo**. En un plano, dos semirrectas con un origen común siempre generan dos ángulos.



Están compuestos por dos lados y un vértice en el origen cada uno.

Ángulos complementarios y suplementarios:

Encuentro la medida del Angulo complementario y suplementario:

"Las oportunidades no ocurren, las creas tu"