<i>ح</i> ريم
OFFICILLY IS TO SEE
The state of
PRESENT

INSTITUCION EDUCATIVA LA PRESENTACION					
NOMBRE ALUMNA:					
AREA:	MATEMÁTICAS				
ASIGNATURA:	MATEMÁTICAS				
DOCENTE:	JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO				
TIPO DE GUIA:	DE APRENDIZAJE				
PERIODO	GRADO	N ⁰	FECHA	DURACION	
2	9°	8	JULIO 24 DE 2023	4 UNIDADES	
		1 !			

INDICADORES DE DESEMPEÑO

- Identifica las características de la función cuadrática, para encontrar los ceros y algunos parámetros de ella y realizar su gráfica.
- Valora y respeta el trabajo de sus compañeras en las clases.

LO QUE VOY A APRENDER...

CARACTERÍSTICAS DE LA ECUACIÓN CUADRÁTICA

<u>Función Cuadrática</u>: Es una relación matemática existente entre las variables **Y** (variable dependiente o función) y **X** variable independiente.

La forma general de la función cuadrática es: $y = ax^2 + bx + C$

Su gráfica corresponde a una figura (curva) que recibe el nombre de *parábola*, formada por dos ramas que se unen en un punto llamado **vértice**. Dependiendo del signo que tenga el número **a** en la función, la gráfica de dicha parábola toma una de las dos formas siguientes:

- Si $\mathbf{a} > \mathbf{0}$ (o sea si \mathbf{a} es un número positivo), la gráfica es: y se dice que es cóncava hacia arriba (o que es convexa).
- Si d < O (o sea a es un número negativo), la gráfica es: y se dice que es cóncava hacia abajo.

LO QUE ESTOY APRENDIENDO ...

Características de la función cuadrática: Son determinados requisitos que debe cumplir dicha función y que son sólo propios de ella. Estas características son cuatro fundamentales:

* LA ORDENADA AL ORIGEN: Es el punto donde la gráfica de la función corta al eje y. Para hallar dicho punto se reemplaza en la función dada a la variable X por cero y se despeja a la variable Y obteniéndose el punto de corte con el eje y que será: (0, Ydespejada).

* RAICES O CEROS DE LA FUNCIÓN: Son los valores (o valor) de X donde la gráfica de la función corta al eje x. Para hallar estas raíces se reemplaza en la función dada a la variable Y por cero y se hallan los valores de X resolviendo la ecuación cuadrática que resulta. El punto o puntos que corresponde a estas raíces (o ceros) se denomina punto o puntos de corte con el eje X y serán: (Xespejada, 0).

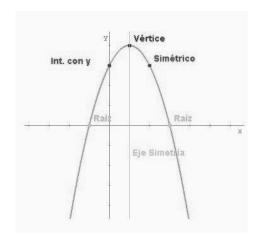
* VÉRTICE DE LA PARÁBOLA: Es el punto donde se unen las ramas de la parábola. Si la parábola es cóncava hacia arriba el vértice recibe el nombre de punto mínimo y si abre hacia abajo recibe el nombre de punto máximo. Sus coordenadas generales son (X_v, Y_v) y se hallan así:

$$X_{v} = -\frac{b}{2a} \qquad Y_{v} = \frac{4ac - b^2}{4a}$$

* EJE DE SIMETRÍA O EJE DE LA PARÁBOLA: Es la recta paralela al eje y que pasa por el vértice de la parábola y que divide a la gráfica en dos partes iguales o simétricas (que son las ramas). La ecuación del eje de simetría siempre es:

$$X = X_{v}$$

Gráfica: Para graficar la función cuadrática se halla primero las tres primeras características y luego se unen los puntos resultantes obteniéndose la gráfica (parábola) de dicha función. A continuación se muestra el ejemplo de una gráfica con sus características:



APLICO LO QUE APRENDÍ...

• PARTE A: Observo y analizo muy cuidadosamente la solución de los siguientes ejercicios realizada por mi profe:

Realiza la gráfica de cada una de las siguientes funciones cuadráticas. Halla también la ecuación de su eje de simetría:

1. $y = -x^2 + 4x$ (a = -1 negativa, es cóncava hacia abajo).

* Ordenada en el origen: Hacemos $\mathbf{x} = \mathbf{0} \rightarrow \mathbf{y} = -(0)^2 + 4(0) \rightarrow \mathbf{y} = 0 \rightarrow (\mathbf{0}, \mathbf{0})$.

* **Raíces:** Hacemos $y = 0 \rightarrow 0 = -x^2 + 4x \rightarrow x^2 - 4x = 0 \rightarrow x(x - 4) = 0$

 \rightarrow x = 0 o x - 4 = 0 \rightarrow x = 0 o x = 4 Estas son las raíces o ceros de la función.

Luego los puntos de corte con el eje X: (0, 0) y (4, 0)

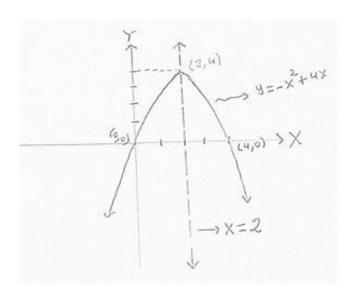
* Vértice:
$$X_v = -\frac{b}{2a}$$
, $a = -1$, $b = 4$, $c = 0 \longrightarrow X_v = -\frac{4}{2(-1)} \longrightarrow X_v = 2$

$$Y_{v} = \frac{4ac - b^{2}}{4a} \rightarrow Y_{v} = \frac{4(-1)(0) - (4)^{2}}{4(-1)} \rightarrow Y_{v} = \frac{0 - 16}{-4} \rightarrow Y_{v} = 4$$

luego el vértice es: (2, 4)

* Ecuación eje de simetría: $X = X_v \rightarrow x = 2$

GRÁFICA:



2. $y = 2x^2 - 6$ (a = 2 positiva, es convexa o cóncava hacia arriba).

* Ordenada en el origen: $x = 0 \rightarrow y = 2(0)^2 - 6 \rightarrow y = -6 \rightarrow (0, -6)$.

* Raíces: $y = 0 \rightarrow 0 = 2x^2 - 6 \rightarrow 2x^2 - 6 = 0 \rightarrow 2x^2 = 6 \rightarrow x^2 = 6/2 \rightarrow x^2 = 3$

 $\rightarrow x = \pm \sqrt{3} \rightarrow x = \sqrt{3}$ o $x = -\sqrt{3}$; Estas son las raíces o ceros de la función.

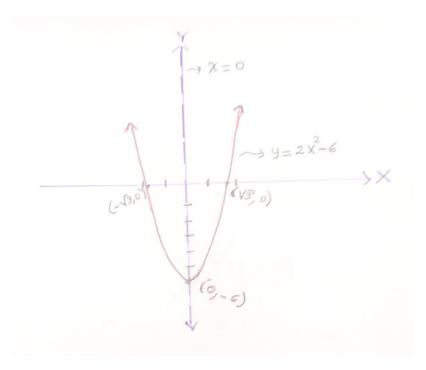
Luego los puntos de corte con el eje X: $(\sqrt{3},0)$ o $(-\sqrt{3},0)$

* Vértice:
$$X_{v} = -\frac{b}{2a}$$
, $a = 2$, $b = 0$, $c = -6$ \longrightarrow $X_{v} = -\frac{0}{2(2)} \longrightarrow X_{v} = 0$
$$Y_{v} = \frac{4ac - b^{2}}{4a} \longrightarrow Y_{v} = \frac{4(2)(-6) - (0)^{2}}{4(2)} \longrightarrow Y_{v} = \frac{-48}{8} \longrightarrow Y_{v} = -6$$

Luego el vértice es: (0, - 6)

* Ecuación eje de simetría: $X = X_v \rightarrow x = 0$

GRÁFICA:



3.
$$y = x^2 - 3x - 4$$

Solución:

 $y = x^2 - 3x - 4$ (**a = 1** positiva, es convexa o cóncava hacia arriba).

- * Ordenada en el origen: Hacemos $\mathbf{x} = \mathbf{0} \rightarrow \mathbf{y} = (0)^2 3(0) 4 \rightarrow \mathbf{y} = -4 \rightarrow (\mathbf{0}, -4)$.
- * Raíces: $y = 0 \rightarrow 0 = x^2 3x 4 \rightarrow x^2 3x 4 = 0 \rightarrow (x 4)(x + 1) = 0$

 \rightarrow x - 4 = 0 o x + 1 = 0 \rightarrow x = 4 o x = -1 Estas son las raíces o ceros de la función.

Luego los puntos de corte con el eje X: (4,0) y (-1,0)

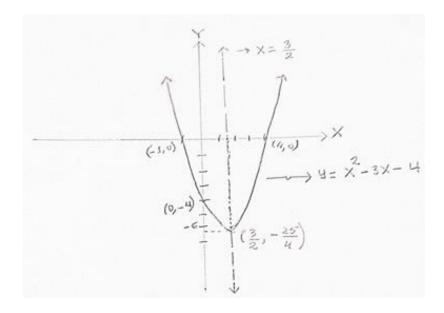
* Vértice:
$$X_v = -\frac{b}{2a}$$
, $a=1$, $b=-3$, $c=-4$ \longrightarrow $X_v = -\frac{-3}{2(1)}$ \longrightarrow $X_v = \frac{3}{2}$

$$Y_v = \frac{4ac - b^2}{4a} \longrightarrow Y_v = \frac{4(1)(-4) - (-3)^2}{4(1)} \longrightarrow Y_v = \frac{-16 - 9}{4} \longrightarrow Y_v = -\frac{25}{4}$$

Luego el **vértice** es:
$$\left(\frac{3}{2}, -\frac{25}{4}\right) \approx \left(1.5, -6.3\right)$$

* Ecuación eje de simetría:
$$\mathbf{X} = \mathbf{X}_{\mathbf{v}} \rightarrow x = \frac{3}{2} \rightarrow 2x = 3 \rightarrow 2x - 3 = 0$$

GRÁFICA:



PARTE B: Mi aporte para que me confronten

Vas a graficar siguiendo los pasos anteriores vistos para ello las siguientes funciones cuadráticas. Además, halla en cada caso la ecuación del eje de simetría.

1.
$$y = 2x^2 + 4x$$
 2. $y = -x^2 - 2x + 3$

"Cada mañana tienes dos opciones: Seguir quejándote de la vida...O hacer algo para cambiarla"

Paulo Coelho